

Subscriber access provided by ISTANBUL TEKNIK UNIV

Callydiyne, a New Diacetylenic Hydrocarbon from the Sponge Callyspongia flammea

Shichang Miao, and Raymond J. Andersen

J. Nat. Prod., 1991, 54 (5), 1433-1434• DOI: 10.1021/np50077a038 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50077a038 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

CALLYDIYNE, A NEW DIACETYLENIC HYDROCARBON FROM THE SPONGE CALLYSPONGIA FLAMMEA

SHICHANG MIAO and RAYMOND J. ANDERSEN*

Departments of Chemistry and Oceanography, University of British Columbia, Vancouver. British Columbia V6T 1W5, Canada

ABSTRACT.—Callydiyne [1], a new symmetrical diacetylenic hydrocarbon, has been isolated from the marine sponge *Callyspongia flammea*.

Marine sponges frequently contain polyacetylenic metabolites (1). As part of our ongoing chemical studies of sponges collected in Papua, New Guinea (2), we have discovered that MeOH extracts of *Callyspongia flammea* Desqueyrox (Callyspongiidae) contain one major secondary metabolite, callydiyne [1], a symmetrical diacetylenic hydrocarbon.

Callydiyne [1] gave a parent ion in the hreims at m/z 214.1713 Da appropriate for a molecular formula of $C_{16}H_{22}$ (6 unsaturations). The 13 C-nmr spectrum of **1** contained only eight resonances (see Experimental), and the ¹H-nmr spectrum contained resonances that integrated for a total of eleven hydrogen atoms, suggesting that callydiyne possessed a twofold element of symmetry. Terminal alkyne [ir 3302 cm⁻¹; ¹³C nmr δ 80.3 (s), 81.2 (d); ¹H nmr δ 3.06] and disubstituted alkene [¹³C nmr δ 107.9 (d), 146.2 (d); ¹H nmr δ 5.44, 5.99] functionalities were readily identified from the nmr data. The COSY spectrum of **1** showed correlations that linked the terminal alkyne to the disubstituted olefin (δ 5.44 and 5.99 correlated to δ 3,06), and it also established that the second alkene substituent contained at least three contiguous methylenes (observed correlations: δ 5.99 to 2.32, 2.32 to 1.40, 1.40 to 1.30). APT data (4 × CH₂) showed that the remaining two protons at δ 1.30 were attached to a methylene carbon, which then had to be connected to the terminus of the threecarbon methylene chain. Because callydiyne [1] was symmetrical, it had to be the dimer of the C₈H₁₁ hydrocarbon fragment identified from the nmr data. Observation of an nOe between the two olefinic protons (δ 5.44 and 5.99) established the Z configuration.

Callydiyne [1] has not been previously reported from either natural sources or synthesis.

EXPERIMENTAL

Specimens of C. flammea (195 g wet wt) were collected by hand using SCUBA on reefs off Madang, Papua, New Guinea. A voucher sample of C. flammea has been deposited at the Zoological Museum of Amsterdam (voucher # ZMA POR. 8435). Freshly collected sponge material was quick-frozen on site and transported to UBC on dry ice. Thawed sponge tissue was homogenized in a Waring blender with MeOH. Filtration of the homogenate gave an aqueous MeOH filtrate that was concentrated in vacuo to give a gummy residue. The residue was suspended in H₂O and extracted sequentially with hexanes, CH₂Cl₂, and EtOAc. The hexane-soluble materials were fractionated by sequential application of LH20 [eluent MeOH-CH2Cl2 (1:1)] and Si gel coumn (eluent hexane) chromatographies to give pure

callydiyne [1] (41 mg): colorless oil; ir (neat) 3302, 3022, 2926, 2855, 2097, 1698, 1616, 1463, 1441, 1216 cm⁻¹; ¹H nmr (400 MHz, CDCl₃) (integrations are relative values only) δ 1.30 (bs, 4H, 1.40 (m, 2H), 2.32 (dq, J = 1.4, 7.4 Hz, 2H), 3.06 (dd, J = 1.4, 0.8 Hz, 1H), 5.44 (ddt, J = 10.6, 2.3, 1.4 Hz, 1H), 5.99 (ddt, J = 10.6, 0.8, 7.5 Hz, 1H); ¹³C nmr (75 MHz, CDCl₃) δ 28.7 (CH₂), 29.1 (CH₂), 29.3 (CH₂), 30.2 (CH₂), 80.3 (C), 81.2 (CH), 107.9 (CH), 146.2 (CH); hreims m/z [M]⁺ 214.1713 (C₁₆H₂₂ Δ M -0.9 mmu); lreims m/z (rel. int.) 214 (0.9), 199 (1), 185 (2), 171 (7), 157 (11), 143 (31), 129 (64), 117 (82), 91 (100), 79 (77), 77 (58), 67 (59), 65 (66).

ACKNOWLEDGMENTS

Financial support was provided by a grant to RJA from NSERC. SCM was supported by a UBC Graduate Fellowship. The authors thank Dr. R. van Soest, University of Amsterdam, for identifying the sponge and Mike Le Blanc and Charlie Ameson for assisting the collection.

LITERATURE CITED

- D.J. Faulkner, Nat. Prod. Rep., 1, 551 (1984).
- E.D. de Silva, R.J. Andersen, and T.M. Allen, *Tetrahedron Lett.*, **31**, 489 (1990).

Received 21 February 1991

18th IUPAC Symposium on the Chemistry of Natural Products

Strasbourg (France)-30 Aug.-4 Sept. 1992

Honorary President: J.M. Lehn; Chairman: G. Ourisson

The program will comprise state-of-the-art plenary lectures (no parallel sessions) and an extensive presentation of posters. As usual, the topics covered will represent a wide selection of synthetic and structural organic chemistry and of more biochemical, biological, or biomedical problems; prebiotic and extra-terrestrial chemistry will be included. Equipment and book/journals/software exhibitions will be presented.

The 3d International Conference on Iron Transport, Storage and Metabolism will take place in parallel 30 Aug.-2 Sept. Other Satellite Symposia are being organized.

Requests for the Second Circular should be addressed to: Mrs. M.C. Dillenseger, General Secretary Centre de Neurochimie, 5 rue Blaise Pascal, F-67084 Strasbourg (France) Fax [33] 88 60 76 20